Restoring Woodlands and Savannahs in the Eastern US: Lessons Learned from a Decade of Research

5th Biennial Shortleaf Pine Conference Van Buren, MO & October 3, 2019

P. Keyser, A. Vander Yacht, C. Henderson, and S. Barrioz

"A squirrel could travel from the Atlantic to the Mississippi without its feet ever touching the ground..."

...or not!!

In **1637**, Thomas Morton wrote that the Indians: "are accustomed to set fire of the Country in all places where they come, and to **burne it twize, in the year**....so that hee that will good tymber...(will not) finde them on upland ground the lower grounds, where the grounds are wett."

Andrew White, on an expedition along the Potoma forest was: "not choked with an undergrowth of b laid out in by hand in a manner so open, that you horse chariot in the midst of the trees."

"Concerning a road built through the Cumberland Ramsey (1853:501) reported, "The top of the moun being then a vast upland prairie covered with growth of native grasses, pastured over as fa7 see, with numerous herds of deer, elk, and burna

Disappearing Fires...

- Disturbance is normal for eastern o
- Fire has been a normal part of that
- Fire-influenced components comp

Edited by Patrick D. Keyser Todd Fearer Craig A. Harper

CBC CRC Press

Center For Native GRASSLANDS Management

An Eastern Grassland without Disturbance

Declining Grassland Birds (1966-2012)

Cooperative Oak Ecosystem Restoration Project A Management Experiment, 2008-2017

			Fire	
		None	Dormant Season	Growing Season
	None/ Minimal	IMPAIRED FOREST		FOREST/ WOODLAND
Canopy Reduction	Partial		MIXED/OAK FOREST	OAK WOODLAND
	Heavy		FOREST/ WOODLAND	OAK SAVANNAH

Acknowledgements

- National Wild Turkey Federation
- Quail Unlimited
- ♦ Joint Science Fire Program
- ♦ USFS (LBL and DBNF)
- ✤ USDA CSREES
- ♦ North Carolina WRC
- TWRA
- Seth Barrioz, Andy Vander Yacht, and Chrissy Henderson
- ♦ UT Forestry, Wildlife & Fisheries

COERP Study Sites

COERP Treatments

Six, 50-ac stands (CRD): - growing-season only - growing 60 & 30 BA - dormant 60 & 30 BA - control

Five reps total (across 3 sites)

• Canopy reduction shifted species in shrubby, seedling, and sapling strata to more shade-intolerant and more fire tolerant

	Control	Woodland	Savannah
Shrubs	Mtn Laurel		
Seedlings	Beech, W. Pine		
Saplings	Beech, W. Pine		

Vander Yacht et al. 2019. Forest Sci., 65:289-303.

• Canopy reduction shifted species in shrubby, seedling, and sapling strata to more shade-intolerant and more fire tolerant

	Control	Woodland	Savannah
Shrubs	Mtn Laurel	Greenbrier, Huckle	berry, Sumac
Seedlings	Beech, W. Pine		
Saplings	Beech, W. Pine		

Vander Yacht et al. 2019. Forest Sci., 65:289-303.

• Canopy reduction shifted species in shrubby, seedling, and sapling strata to more shade-intolerant and more fire tolerant

	Control	Woodland	Savannah
Shrubs	Mtn Laurel	Greenbrier, Huckleberry, Sumac	
Seedlings	Beech, W. Pine	BO, SO, SRO, Sassafras, Sourwood	
Saplings	Beech, W. Pine		

Vander Yacht et al. 2019. Forest Sci., 65:289-303.

• Canopy reduction shifted species in shrubby, seedling, and sapling strata to more shade-intolerant and more fire tolerant

	Control	Woodland	Savannah
Shrubs	Mtn Laurel	Greenbrier, Huckleberry, Sumac	
Seedlings	Beech, W. Pine	BO, SO, SRO, Sassafras, Sourwood	
Saplings	Beech, W. Pine	BO, Hickories	BO, SRO, SO, WO, Hickories

Vander Yacht et al. 2019. Forest Sci., 65:289-303.

Only modest differentiation between March and October burns
 needed to look at Aug/Sept (original goal) – likely to be more effective...

	Control	Fall Burn	Spring Burn
Shrubs	Mtn Laurel		
Seedlings	Beech, W. Pine		
Saplings	Beech, W. Pine		

Vander Yacht et al. 2019. Forest Sci., 65:289-303.

Only modest differentiation between March and October burns
 needed to look at Aug/Sept (original goal) – likely to be more effective...

	Control	Fall Burn	Spring Burn
Shrubs	Mtn Laurel	Greenbrier, Huckle Rubus, Sumac	berry, Muscadine,
Seedlings	Beech, W. Pine		
Saplings	Beech, W. Pine		

Vander Yacht et al. 2019. Forest Sci., 65:289-303.

Only modest differentiation between March and October burns
 needed to look at Aug/Sept (original goal) – likely to be more effective...

	Control	Fall Burn	Spring Burn
Shrubs	Mtn Laurel	Greenbrier, Huckleberry, Muscadine, Rubus, Sumac	
Seedlings	Beech, W. Pine	BO, SO, Sassafras, R. Maple, B. Gum	
			WO, Hick., BC
Saplings	Beech, W. Pine		

Vander Yacht et al. 2019. Forest Sci., 65:289-303.

Only modest differentiation between March and October burns
 needed to look at Aug/Sept (original goal) – likely to be more effective...

	Control	Fall Burn 🗸	Spring Burn
Shrubs	Mtn Laurel	Greenbrier, Huckleberry, Muscadine, Rubus, Sumac	
Seedlings	Beech, W. Pine	BO, SO, Sassafras, R. Maple, B. Gum	
			WO, Hick., BC
Saplings	Beech, W. Pine	BO, Hick., Sassafras, R. Maple	
			SO, SRO, WO

Vander Yacht et al. 2019. Forest Sci., 65:289-303.

Herbaceous Responses

Vander Yacht et al. 2017. For Ecol. & Manage. 390:187-202

Grass and Forb Richness

A. Vander Yacht, PhD Dissertation, 2018, Univ. TN

Grass and Forb Richness

A. Vander Yacht, PhD Dissertation, 2018, Univ. TN

Shortleaf and Bluestems

- \circ When canopy cover >65%, response of both was negligible
- Below 65%, response of both increased when:
 - vertical woody cover was low (<49%)
 - woody groundcover was <85%
- When these conditions were met:
 - o Bluestem cover and density increased
 - Shortleaf root-collar diameter, stem density and height increased

Avian Occupancy vs. Basal Area

EARLY SUCC: INBU+ PRAW+ YBCH+ CAWR+ FISP RHWO+ EATO+ 3 = no trend

LATE SUCC: HOWA-OVEN-EAWP+/-7 = no trend

HE UNIVERSITY OF TENNESSEE

Vander Yacht et al., 2016, J. Wildl. Manage. 80:1091-1105.

Occupancy vs. Herbaceous Ground Cover

EARLY SUCC: INBU+ PRAW+ YBCH+ EATO+/-CAWR+ FISP+ 4 = no trend

LATE SUCC: OVEN-EAWP+/-8 = no trend

Vander Yacht et al., 2016, J. Wildl. Manage. 80:1091-1105.

"Sweet Spots" for Avian Conservation?

Partners in Flight total Conservation Score (all species combined)

- More high PIF score species among ES (e.g., PRAW vs. REVI)
- o OVEN, SCTA driving low values at 20% herb cover

Nest Distribution and Fate by Treatment

Prairie Warbler Nest Survival

Period survival (24 days) = 20.7%; 2015 = 6.8%; 2016 = 32.5% (n = 105) No relationship between survival and BA or midstory density, but...

Prairie Warbler Nest Survival vs. Fire

Abundance by Year

Nest Distribution and Fate by Treatment

Red-headed Woodpecker Nest Survival

- Very high survival rates: 84.1% (n =47)
 - Did not vary by year (no apparent fire effect)
 - No stand-level covariates
 - Weak support for nest tree BA ('-') and DBH ('+'), but, 95% CI captured zero in both cases...

Lessons Learned

- shifted woody seedlings and saplings from shadetolerant, fire-intolerant species to more shadeintolerant and fire-tolerant species
- increased presence of shortleaf pine (restoration!)
- increased herbaceous cover, richness, & diversity
 strongly influenced by BA

Lessons Learned

Woodland and Savannah Restoration:

increased early succ'l. bird occupancy/abundance
 strongly influenced by BA and herbaceous ground cover

mature forest species generally persisted
 even increased at some levels of disturbance

Increased PRAW nesting on restoration sites (controls = 0 nests)

Increased RHWO nesting on restoration sites (controls = 0 nests)

Conclusions

- Restores long-missing component of eastern forest ecosystems
- Provides additional benefits (e.g., plant richness from 16 to 255 species, many conservative/rare)
- Woodland/savannah restoration beneficial for wildlife conservation
 - game species as well (esp. quail, turkey)?
- Research should continue to document responses: through complete restoration as well as longterm impacts

