Genetic diversity within and among populations of shortleaf pine (Pinus echinata Mill.) and loblolly pine (Pinus taeda L.) (2008)Xu, S., Tauer, C. G., & Nelson, C. D. (2008a). Genetic diversity within and among populations of shortleaf pine (Pinus echinata Mill.) and loblolly pine (Pinus taeda L.). Tree Genetics & Genomes, 4(4), 859-868. Retrieved from https://www.srs.fs.usda.gov/pubs/ja/ja_xu004.pdf Shortleaf pine (n=93) and loblolly pine (n=112) trees representing 22 seed sources or 16 physiographic populations were sampled from Southwide Southern Pine Seed Source Study plantings located in Oklahoma, Arkansas, and Mississippi. The sampled trees were grown from shortleaf pine and loblolly pine seeds formed in 1951 and 1952, prior to the start of intensive forest management across their native ranges. Amplification fragment length polymorphism (AFLP) markers were developed and used to study genetic diversity and its structure in these pine species. After screening 48 primer pairs, 17 and 21 pairs were selected that produced 794 and 647 AFLPs in shortleaf pine and loblolly pine, respectively. High-AFLP-based genetic diversity exists within shortleaf pine and loblolly pine, and most (84.73% in shortleaf pine; 87.69% in loblolly pine) of this diversity is maintained within physiographic populations. The high value of unbiased measures of genetic identity and low value of genetic distance for all pairwise comparisons indicates that the populations have similar genetic structures. For shortleaf pine, there was no significant correlation between geographic distance and genetic distance (r=0.28), while for loblolly pine there was a weak but significant correlation (r=0.51)
|