Using hyperspectral remote sensing to detect and quantify southeastern pine senescence effects in red-cockaded woodpecker (Picoides borealis) habitat (2010)Santos, M. J., Greenberg, J. A., & Ustin, S. L. (2010). Using hyperspectral remote sensing to detect and quantify southeastern pine senescence effects in red-cockaded woodpecker (Picoides borealis) habitat. Remote Sensing of Environment, 114(6), 1242-1250. Retrieved from http://www.sciencedirect.com/science/article/pii/S0034425710000313 Conservation of threatened and endangered species requires maintenance of critical habitat. The red-cockaded woodpecker Picoides borealis (RCW) is a threatened bird species, endemic to the mixed conifer forests of the southeastern United States. RCW nests and forages preferentially in mature longleaf pine Pinus palustris, but also uses mature loblolly pine Pinus taeda and shortleaf pine Pinus echinata forests. In the last century, the extent of mature pine forests has been greatly reduced by logging. The RCW, in contrast to other woodpeckers, excavates nest cavities in living trees and senescence symptoms (year round leaf chlorosis and leaf mortality) have been observed in mature pine stands across the southeast. Widespread mortality of the mature pine forests would threaten the long-term survival of the RCW. We used airborne hyperspectral data across a portion of Ft. Benning Military Installation, Georgia, U.S.A., to determine if senescent trees can be identified and mapped and assess the likely persistence of mature pines in the RCW habitat. Univariate analysis of variance showed good separation between asymptomatic, senesced and dead physiological conditions with asymptomatic trees having significantly higher reflectance for all bands in the wavelength range between 0.719 and 1.1676 µm, senescent trees having significantly lower reflectance for bands in the range between 1.1927 and 1.3122 µm, and dead trees having significantly higher reflectance for bands in the range between 1.8151 and 1.9471 µm. Classification and Regression Tree (CART) models achieved correct classification rates and kappa statistics above 70%. CART models selected information from wavelength regions similar to those identified from the ANOVA, which likely explains their performance. Our aggregated CART model of tree senescence estimated that 141.4 ha (3%) of the study area is affected. RCW nests occurred in areas with significantly higher tree cover, and trees within foraging and home ranges did not have significantly more senescence than areas without RCW. These results indicate that although tree senescence is widespread, mortality is yet to significantly affect RCW habitat. Results and analysis of critical habitat similar to those exemplified in this study can extend our knowledge about the stressors of these important and imperiled components of biodiversity http://www.sciencedirect.com/science/article/pii/S0034425710000313
|